Paolo Ruffini (1765, 1822) fue un matemático italiano, que estableción un método más breve para hacer la división de polinomios, cuando el divisor es un binomio de la forma x — a.
Regla de Ruffini
Para explicar los pasos a aplicar en la regla de Ruffini vamos a tomar de ejemplo la división:
(x4 − 3x2 + 2 ) : (x − 3)
1 Si el polinomio no es completo, lo completamos añadiendo los términos que faltan con ceros.
2Colocamos los coeficientes del dividendo en una línea.
3Abajo a la izquierda colocamos el opuesto del término independendiente del divisor.
4Trazamos una raya y bajamos el primer coeficiente.
5Multiplicamos ese coeficiente por el divisor y lo colocamos debajo del siguiente término.
Regla de Ruffini
Para explicar los pasos a aplicar en la regla de Ruffini vamos a tomar de ejemplo la división:
(x4 − 3x2 + 2 ) : (x − 3)
1 Si el polinomio no es completo, lo completamos añadiendo los términos que faltan con ceros.
2Colocamos los coeficientes del dividendo en una línea.
3Abajo a la izquierda colocamos el opuesto del término independendiente del divisor.
4Trazamos una raya y bajamos el primer coeficiente.
5Multiplicamos ese coeficiente por el divisor y lo colocamos debajo del siguiente término.
6Sumamos los dos coeficientes.
7Repetimos el proceso anterior.
Volvemos a repetir el proceso.
Volvemos a repetir.
8El último número obtenido, 56 , es el resto.
9El cociente es un polinomio de grado inferior en una unidad al dividendo y cuyos coeficientes son los que hemos obtenido.
x3 + 3 x2 + 6x +18
No hay comentarios:
Publicar un comentario